(1) Constant rule: If c is a real number, then

$$
\frac{d}{d x}[c]=0
$$

eg. $\frac{d}{d x}[3]=0, \frac{d}{d x}[\sqrt{2}]=0, \frac{d}{d x}\left[3^{\pi}\right]=0$.
(2) Power rule: If n is a real number, then

$$
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}
$$

eg. $\frac{d}{d x}\left[x^{4}\right]=4 x^{3}, \frac{d}{d x}\left[x^{-2}\right]=-2 x^{-3}, \frac{d}{d x}\left[\sqrt[7]{x^{3}}\right]=\frac{d}{d x}\left[x^{\frac{3}{7}}\right]=\frac{3}{7} x^{-\frac{4}{7}}$.
(3) Constant multiple rule: If f is a differentiable function of x and c is a real number, then

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x}[f(x)]=c f^{\prime}(x)
$$

eg. $\frac{d}{d x}\left[2 x^{5}\right]=2 \frac{d}{d x}\left[x^{5}\right]=10 x^{4}, \frac{d}{d x}\left[\sqrt{3} x^{\frac{5}{2}}\right]=\sqrt{3} \frac{d}{d x}\left[x^{\frac{5}{2}}\right]=\sqrt{3} \frac{5}{2} x^{\frac{3}{2}}=\frac{5 \sqrt{3}}{2} x^{\frac{3}{2}}$.
Remark: Note that derivative of a constant function is zero (constant rule). But derivative of a function multiplied by a constant may not be zero (constant multiple rule).
(4) Sum and difference rules: If f and g are differentiable functions of x, then

$$
\begin{aligned}
\frac{d}{d x}[f(x)+g(x)] & =\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)] \\
\frac{d}{d x}[f(x)-g(x)] & =\frac{d}{d x}[f(x)]-\frac{d}{d x}[g(x)]
\end{aligned}
$$

eg. $\frac{d}{d x}\left[x^{2}+x\right]=\frac{d}{d x}\left[x^{2}\right]+\frac{d}{d x}[x]=2 x+1$.
Special application: Suppose f and g are differentiable functions of x, and $f(x)=g(x)+$ $2 x^{5}-1$. If $f^{\prime}(1)=-2$ find $g^{\prime}(1)$.
Solution: Differentiating both sides of $f(x)=g(x)+2 x^{5}-1$ with respect to x, we have

$$
f^{\prime}(x)=g^{\prime}(x)+10 x^{4}
$$

Putting $x=1$ in both sides we have

$$
f^{\prime}(1)=g^{\prime}(1)+10
$$

We know that $f^{\prime}(1)=-2$, therefore $g^{\prime}(1)=-12$.
(5) Product rule: If f and g are differentiable functions, then

$$
\frac{d}{d x}[f(x) g(x)]=\left[\frac{d}{d x}(f(x))\right] g(x)+f(x) \frac{d}{d x}[g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

eg.

$$
\begin{aligned}
\frac{d}{d x}\left[\left(x^{2}+1\right)\left(x^{3}+x\right)\right] & =\left[\frac{d}{d x}\left(x^{2}+1\right)\right]\left(x^{3}+x\right)+\left(x^{2}+1\right) \frac{d}{d x}\left[x^{3}+x\right] \\
& =[2 x+0]\left(x^{3}+x\right)+\left(x^{2}+1\right)\left[3 x^{2}+1\right] \\
& =2 x\left(x^{3}+x\right)+\left(x^{2}+1\right)\left(3 x^{2}+1\right) .
\end{aligned}
$$

General product rule: If we have product of three or more functions, then product rule is

$$
\begin{aligned}
\frac{d}{d x}\left[f_{1}(x) f_{2}(x) f_{3}(x)\right]= & f_{1}^{\prime}(x) f_{2}(x) f_{3}(x)+f_{1}(x) f_{2}^{\prime}(x) f_{3}(x)+f_{1}(x) f_{2}(x) f_{3}^{\prime}(x) \\
\frac{d}{d x}\left[f_{1}(x) f_{2}(x) f_{3}(x) f_{4}(x)\right]= & f_{1}^{\prime}(x) f_{2}(x) f_{3}(x) f_{4}(x)+f_{1}(x) f_{2}^{\prime}(x) f_{3}(x) f_{4}(x) \\
& +f_{1}(x) f_{2}(x) f_{3}^{\prime}(x) f_{4}(x)+f_{1}(x) f_{2}(x) f_{3}(x) f_{4}^{\prime}(x)
\end{aligned}
$$

and so on.
(6) Quotient rule: If f and g are differentiable functions and $g(x) \neq 0$, then

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} .
$$

eg.

$$
\begin{aligned}
\frac{d}{d x}\left[\frac{x^{2}+3 x}{x+2}\right] & =\frac{(x+2) \frac{d}{d x}\left[x^{2}+3 x\right]-\left(x^{2}+3 x\right) \frac{d}{d x}[x+2]}{(x+2)^{2}} \\
& =\frac{(x+2)(2 x+3)-\left(x^{2}+3 x\right)(1+0)}{(x+2)^{2}} \\
& =\frac{(x+2)(2 x+3)-\left(x^{2}+3 x\right)}{(x+2)^{2}} .
\end{aligned}
$$

(7) Chain rule: If $y=f(u)$ is a differentiable function of u and $u=g(x)$ is a differentiable function of x then $y=f(g(x))$ is also a differentiable function of x and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Or, equivalently

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

$e g$.

1. Take $y=\sin \left(x^{2}+1\right)$. Notice that if we take $y=f(u)=\sin u$ and $u=g(x)=x^{2}+1$, then we have $y=f(g(x))=\sin \left(x^{2}+1\right)$. By chain rule

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d y}{d u} \cdot \frac{d u}{d x} \\
& =\frac{d}{d u}[\sin u] \frac{d}{d x}\left[x^{2}+1\right] \\
& =[\cos u](2 x+0) \\
& =2 x \cos \left(x^{2}+1\right), \quad\left(\text { since } u=x^{2}+1\right)
\end{aligned}
$$

2. $y=\tan \left(\ln x^{2}\right)$. Applying chain rule repeatedly we have

$$
\begin{aligned}
\frac{d y}{d x} & =\sec ^{2}\left(\ln x^{2}\right) \frac{d}{d x}\left[\ln x^{2}\right] \\
& =\sec ^{2}\left(\ln x^{2}\right) \frac{1}{x^{2}} \frac{d}{d x}\left[x^{2}\right] \\
& =\sec ^{2}\left(\ln x^{2}\right) \frac{1}{x^{2}} \cdot 2 x \\
& =\frac{2}{x} \sec ^{2}\left(\ln x^{2}\right)
\end{aligned}
$$

Remark: At the first step, I considered $\left(\ln x^{2}\right)$ as x. We know that $\frac{d}{d x} \tan x=\sec ^{2} x$. That's why I got $\sec ^{2}\left(\ln x^{2}\right)$ at the first step. But $\left(\ln x^{2}\right)$ is not x. So according to chain rule (equivalent version), we have to multiply by $\frac{d}{d x}\left[\ln x^{2}\right]$. Now I consider x^{2} as x. We know that $\frac{d}{d x}[\ln x]=\frac{1}{x}$, that's why I got $\frac{1}{x^{2}}$. But x^{2} is not x. So again we have to apply chain rule and multiply the whole thing by $\frac{d}{d x}\left[x^{2}\right]$. Now we know that $\frac{d}{d x}\left[x^{2}\right]=2 x$, and we are done!
(8) General power rule: If $f(x)$ is a differentiable function of x. Then for any real number n we have

$$
\frac{d}{d x}\left[(f(x))^{n}\right]=n(f(x))^{n-1} \cdot f^{\prime}(x)
$$

This rule is a consequence of chain rule.
eg. $y=(\sin x)^{3}$. Taking $f(x)=\sin x$ and using the general power rule we have

$$
\begin{aligned}
\frac{d y}{d x} & =3(\sin x)^{2} \cdot \frac{d}{d x}[\sin x] \\
& =3(\sin x)^{2} \cos x
\end{aligned}
$$

